

Welcome to broadway sensitive serializer’s documentation

The idea behind this project is to make a CQRS+ES system compliant, specifically implemented
through the Broadway[#1] library, with the general data protection
regulation (GDPR), in particular with the right to be forgotten.

Contents

	Basic concepts
	CQRS

	Event Sourcing

	Event Store immutability

	Projections

	Art. 17 GDPR -Right to be forgotten

	CQRS+ES+GDPR

	The proposal
	Event Store

	Projections

	Important note

	Broadway concepts and proposal
	Aggregate and persistence

	Event serialization

	Proposal implementation

	Double key encryption
	AGGREGATE_KEY

	AGGREGATE_MASTER_KEY

	Modules
	Architectural diagram

	Data manager
	SensitiveDataManager

	KeyGenerator

	AggregateKeys

	Serializer
	BroadwaySerializerDecorator

	SensitiveSerializer

	Sensitization strategies
	Whole strategy

	Partial strategy

	Custom strategy

	Strategy summary

	Value Serializer

	AggregateKey model creation
	Automatic creation

	Manual creation

	Examples
	Library examples
	Whole sensitization example

	Partial sensitization example

	Custom sensitization example

	Demo project

	Limitations
	Existing CQRS + ES projects
	Future idea

Footnotes

[#1]
https://github.com/broadway/broadway

Basic concepts

CQRS

CQRS (Command Query Responsibility Segregation) is a pattern that aims to separate responsibilities
for queries and for commands. It is a pattern that separates the read and write operations on a given model.
This, in practice, leads to different concrete objects, separated in write models and read models.
So, this pattern can lead to different tables or data stores where the data is separated based on whether it is
a command (write) or a query (read). Separation apart, the last state of the model will still be persisted as it
happens in traditional CRUD systems.

Event Sourcing

ES (Event Sourcing), used together with CQRS, “transforms” the writing part of the CQRS models into a succession
of events that are persisted in an Event Store, a specific table or data store that acts as a chronological and
immutable register of events. The idea is that commands executed on a model lead to the issue of events which are
stored in the Event Store. In this table are persisted all events issued by a Model, with a specific incremental
index, sometimes called playhead, that represents order in which the events have been issued; for each new Model
(Aggregate), its events starts with playhead = 0. Event Store is therefore recording system for all events that,
if re-applied to the model in same order of generation, bring it to its last state. Or it might be possible to see
a previous status of a model. These events then, if listened to specific Listeners, can project views (Read Models)
or generate new commands (Processor). The views will then be the models (persisted in tables other than the Event
Store or even a different Data Store) used by the read queries.

[image: CQRS+ES diagram]

CQRS+ES diagram from Microsoft’s website[#1]

Event Store immutability

So using whole CQRS+ES pattern, we have an Event Store in which all events will be written in chronological order and
grouped for each model using aggregate id. Event Store is immutable by its nature; after writing an event, it can
never change. If necessary, compensation events will be issued to compensate the previous events. Imagine a bank
account and its list of transaction, and think of a compensation event as a reversal.

Projections

In a CQRS+ES system there are usually projections. If the event store is the chronological register of all the writing
operations that took place on a specific Aggregate, then a projection is a specific view of the data; for a single
Aggregate we could have as many views as there are our needs. So, after an event is issued, an event listener could
listen that event in order to project a view of it. Multiple event listeners can listen same event to project different
representations of the same data set.

Art. 17 GDPR -Right to be forgotten

The lay says: The data subject shall have the right to obtain from the controller the erasure of personal data
concerning him or her without undue delay and the controller shall have the obligation to erase personal data
without undue delay… Read the complete legislation[#2]

CQRS+ES+GDPR

We have said that in CQRS+ES pattern the Event Store is immutable and we have also said that to be compliant with the
GDPR, a user can be request cancellation of his data. Thus said it seems a paradox, right? Because deleting user’s data
in a CQRS+ES system would mean either deleting events from Event Store or modifying existing events. Both things we
cannot do. Compensation events cannot useful in this case as by going back in history, we could always recover user’s
data.

Footnotes

[#1]
https://docs.microsoft.com/en-us/azure/architecture/patterns/event-sourcing

[#2]
https://gdpr-info.eu/art-17-gdpr/

The proposal

This library proposes a solution to the problem about CQRS+ES+GDPR.

Event Store

Instead of thinking in terms of deleting or modifying events, the idea is to persist from the very beginning of the
history, events in which payload (user information, or in general the event containing sensitive data) is encrypted by
an encryption key specific for each Aggregate. As long as the key is present, the data can be encrypted and decrypted.
When the key will be deleted (following a user request), the events will remain in the Event Store, but the payload,
originally encrypted, will remain encrypted without the possibility of decryption. Thus, the story will remain
unchanged, but the data is not understandable.

Normal payload

{
 "class": "SensitiveUser\\User\\Domain\\Event\\UserRegistered",
 "payload": {
 "id": "b0fce205-d816-46ac-886f-06de19236750",
 "name": "Matteo",
 "surname": "Galacci",
 "email": "m.galacci@gmail.com"
 "occurred_at": "2022-01-08T14:22:38.065+00:00",
 }
}

Sensitized payload

{
 "class": "SensitiveUser\\User\\Domain\\Event\\UserRegistered",
 "payload": {
 "id": "b0fce205-d816-46ac-886f-06de19236750",
 "name": "Matteo",
 "surname": "#-#2Iuofg4NKKPLAG2kdJrbmQ==:bxQo+zXfjUgrD0jHuht0mQ==",
 "email": "#-#OFLfN9XDKtWrmCmUb6mhY0Iz2V6wtam0pcqs6vDJFRU=:bxQo+zXfjUgrD0jHuht0mQ==",
 "occurred_at": "2022-01-08T14:22:38.065+00:00",
 }
}

Projections

The sensitization operation is performed at a different time from the event projection, so the views will have the data
decrypted to allow the read operations to work correctly. When a user makes use of the right to be forgotten, you
should do three things:

	Delete his encryption key

	Delete the views that contain his data

	Re-project events to regenerate views with encrypted data. (This will be easy as since there is no encryption key for a specific Aggregate, reading it from the Event Store will be hydrated with the sensitized data. This obviously involves particular checks in the Value Objects or in the Aggregate itself)

[image: Broadway sensitive serializer event store representation]
Broadway sensitive serializer event store representation

Important note

It’s important understand that the idea behind this project is not about general security or data leak. The idea
behind this implementation is rather to make a CQRS + ES system compliant with the user’s right of asking at any time
to be forgotten, while keeping the system consistent.

Of course, you can use this library also in a different context of GDPR law, since that basically this library does
nothing but decorate Broadway serializer, giving it the ability to encrypt and decrypt payload of the events.

Footnotes

Broadway concepts and proposal

Aggregate and persistence

Since this wiki is not meant to be a complete manual on the concepts in question, we will just call the Model,
Aggregate and remind ourselves that the Aggregate, as such, is the source of our domain events; a client will ask
the User Aggregate to create a new user, which will not only create the instance, but also the related
event, UserCreated.

class BroadwayUsers extends EventSourcingRepository implements Users
{
 public function add(User $user): void
 {
 parent::save($user);
 }
}

class User extends EventSourcedAggregateRoot
{
 public static function crea(
 UserId $userId,
 string $name,
 string $surname,
 string $email,
 DateTimeImmutable $regDate
): self
 {
 $user = new self();

 $user->apply(new UserCreated($userId, $name, $surname, $email, $regDate));

 return $user;
 }
}

$user = User::create($userId, $name, $surname, $email, $registrationDate);

$users->add($user);

Event serialization

When we ask Broadway to persist an Aggregate, the EventSourcingRepository takes all the events not yet committed from
the Aggregate and asks the specific implementation of the Event Store to serialize them and then save them.
For example, in the case of Broadway DBALEventStore:[#1]

private function insertMessage(Connection $connection, DomainMessage $domainMessage): void
{
 $data = [
 'uuid' => $this->convertIdentifierToStorageValue((string) $domainMessage->getId()),
 'playhead' => $domainMessage->getPlayhead(),
 'metadata' => json_encode($this->metadataSerializer->serialize($domainMessage->getMetadata())),
 'payload' => json_encode($this->payloadSerializer->serialize($domainMessage->getPayload())), // <-----
 'recorded_on' => $domainMessage->getRecordedOn()->toString(),
 'type' => $domainMessage->getType(),
];

 $connection->insert($this->tableName, $data);
}

When instantiating the EventSourcingRepository you need to inject a serializer ($this->payloadSerializer) which
in the case of the default Broadway implementation is a SimpleInterfaceSerializer which implements the
Broadway\Serializer interface. SimpleInterfaceSerializer does nothing but call the Broadway\Serializer::serialize($object): array
or Broadway\Serializer::deserialize(array $serializedObject) method on the event to be serialized in the case of
reading from the Event Store, where it is necessary to recreate the event starting from the payload.

Let’s focus for now on the Broadway\Serializer::serialize($object): array method which, as read from the signature,
returns an array which is later converted to json thanks to PHP’s json_encode() function.

Proposal implementation

It is precisely on the serializer that this library intervenes. The idea is to decorate the native Broadway
serialization by adding the ability to encrypt and decrypt (sensitize and desensitize) the payloads of the events, or
rather the values of its keys, based on 3 strategies that we will see later, Whole strategy, Partial Strategy and
Custom strategy. Therefore, when a new aggregate is created, a specific key will be generated which will be used
to encrypt and decrypt.

DBAL payload

{
 "class": "SensitiveUser\\User\\Domain\\Event\\UserRegistered",
 "payload": {
 "id": "446effc9-4f5c-4369-8e89-91cb5c8509b9",
 "occurred_at": "2022-01-08T14:22:38.065+00:00",
 "name": "Matteo",
 "surname": "Galacci",
 "email": "m.galacci@gmail.com"
 }
}

Whole strategy

{
 "class": "SensitiveUser\\User\\Domain\\Event\\UserRegistered",
 "payload": {
 "email": "#-#OFLfN9XDKtWrmCmUb6mhY0Iz2V6wtam0pcqs6vDJFRU=:bxQo+zXfjUgrD0jHuht0mQ==",
 "id": "b0fce205-d816-46ac-886f-06de19236750",
 "name": "#-#EXWLg\/JANMK\/M+DmlpnOyQ==:bxQo+zXfjUgrD0jHuht0mQ==",
 "occurred_at": "2022-01-08T14:25:13.483+00:00",
 "surname": "#-#2Iuofg4NKKPLAG2kdJrbmQ==:bxQo+zXfjUgrD0jHuht0mQ=="
 }
}

Partial strategy

{
 "class": "SensitiveUser\\User\\Domain\\Event\\UserRegistered",
 "payload": {
 "email": "#-#jTYqDtzJ8HHabEnJMMtuaiwiFcmCkZzel5985nSf\/Ig=:iEMqT4YFE7OQzKdClNaDUg==",
 "id": "96607c7a-f4cd-4dd7-a406-9cde00913f79",
 "name": "Dario",
 "occurred_at": "2022-01-14T15:04:58.323+00:00",
 "surname": "#-#SXZXQsvLTCVX8Kel0yaoHg==:iEMqT4YFE7OQzKdClNaDUg=="
 }
}

Custom strategy

{
 "class": "SensitiveUser\\User\\Domain\\Event\\UserRegistered",
 "payload": {
 "id": "c9298698-b30e-40c5-8d85-624fdf57f9df",
 "occurred_at": "2022-01-08T14:26:39.483+00:00",
 "name": "Matteo",
 "surname": "Galacci",
 "email": "#-#aw+tw7shnEs2px030QS9WgRmGZckEGnIeR0a8ByMkPI=:Q0jkEOZtOs56tMkc8SjP5g=="
 }
}

Double key encryption

As mentioned above, when a new Aggregate is created, its key is also created and persisted in the appropriate table.
Each aggregate has its own key so that it can invalidate individual Aggregates upon request. To improve security, the
key of the aggregate, which we will call AGGREGATE_KEY, is in turn encrypted with what we will
call AGGREGATE_MASTER_KEY.

AGGREGATE_KEY

	It persisted in the database and is in a 1:1 relationship with the aggregate.

	It is encrypted with the AGGREGATE_MASTER_KEY. This is to prevent events from being decrypted following a database violation.

	It can be deleted so as to make the Aggregate no longer decryptable

AGGREGATE_MASTER_KEY

	It is one for all AGGREGATE_KEY.

	It is not persisted in the database. It is set in an environment variable or otherwise on the server. More drivers will be available in the future to get the key.

Footnotes

[#1]
https://github.com/broadway/event-store-dbal

Modules

The library consists of 2 Modules, DataManager and Serializer.

Architectural diagram

[image: Broadway sensitive serializer architecture]
Broadway sensitive serializer architecture

Data manager

DataManager module deals with data encryption and decryption, the creation of the AGGREGATE_KEY and the
orchestration of the logics related to the sensitization and desensitization of events.

SensitiveDataManager[#1]

It is the interface for string encryption and decryption services. It asks for the implementation of the doEncrypt
and doDecrypt methods, in which to implement your own concrete logic. The interface also provides the public
constant SensitiveDataManager::IS_SENSITIZED_INDICATOR[#2]
which is used as a prefix in encrypted strings in order to understand if a string is in the clear or not.
This check can be done with the SensitiveTool::isSensitized(string $data): bool[#3] tool. Very convenient when it is necessary to carry out validations
in the hydration phase, for example of a Value Object or an Aggregate.

The library provides an implementation of this interface that uses the AES256 algorithm: AES256SensitiveDataManager[#4]

KeyGenerator[#5]

It is the interface for the AGGREGATE_KEY creation services. Asks for the implementation of the generate method.

The library provides an implementation of this interface based on openssl: OpenSSLKeyGenerator[#6]

AggregateKeys[#7]

It is the interface to the repository that takes care of the persistence of the AGGREGATE_KEY through Model
AggregateKey[#8].
It asks for the implementation of the add, withAggregateId and update methods.

A DBAL-based implementation is available by installing the Broadway Sensitive Serializer DBAL[#9]
library.

Serializer

BroadwaySerializerDecorator[#10]

It is the abstract class that represents the original Broadway serializer decorator. It implements the
Broadway’s serializer[#11]
interface and depends on an implementation of Broadway’s serializer.

SensitiveSerializer[#12]

It is the concrete serializer implemented by the library. Extends BroadwaySerializerSerializer and depends
on a BroadwaySerializerSerializer[#13]
object (you can pass the standard Broadway serializer, SimpleInterfaceSerializer[#14])
and a SensitizerStrategy object.

Sensitization strategies

The library provides three different types of sensitization for the events payload, Whole, Partial and Custom.

Whole strategy

The Whole strategy aims to encrypt all the keys of the event payload with the exception of the aggregate id and the date
of issue of the event.

{
 "class": "SensitiveUser\\User\\Domain\\Event\\UserRegistered",
 "payload": {
 "email": "#-#OFLfN9XDKtWrmCmUb6mhY0Iz2V6wtam0pcqs6vDJFRU=:bxQo+zXfjUgrD0jHuht0mQ==",
 "id": "b0fce205-d816-46ac-886f-06de19236750",
 "name": "#-#EXWLg\/JANMK\/M+DmlpnOyQ==:bxQo+zXfjUgrD0jHuht0mQ==",
 "occurred_at": "2022-01-08T14:25:13.483+00:00",
 "surname": "#-#2Iuofg4NKKPLAG2kdJrbmQ==:bxQo+zXfjUgrD0jHuht0mQ=="
 }
}

The reference class for this strategy is WholePayloadSensitizer[#15]. While the client class of the strategy is
WholeStrategy[#16].
This class depends on the WholePayloadSensitizer and the WholePayloadSensitizerRegistry[#17]
registry which must be initialized with a class-string[] containing the list of FQCN (Full Qualified Class Name) of the events that
you want to make subject to encryption. This therefore implies that not all events will be encrypted, but it can be
selected selectively by populating the register.

Keys exclusion

The id key of the Aggregate can be configured during strategy creation via the
WholePayloadSensitizer::$excludedIdKey[#18]
attribute. In the same way it is possible to indicate a list of keys to be excluded from encryption using the
WholePayloadSensitizer::$excludedKeys[#19]
attribute.

Run whole strategy example example/WholeStrategy[#20]

make build-php ARG="--no-cache"
make upd
make composer ARG="install"
make enter
php example/WholeStrategy/example.php

Partial strategy

The partial strategy, probably the most convenient, involves the selective and parameterized encryption of a
payload. It will be sufficient to pass to the PartialPayloadSensitizerRegistry[#21]
register an array with the events to be encrypted and for each event, indicating the keys:

The client class of the strategy is PartialStrategy[#22]
which is dependent on the PartialPayloadSensitizerRegistry and PartialPayloadSensitizer[#23].

$events = [
 MyEvent::class => ['email', 'surname'],
 MySecondEvent::class => ['address'],
];

new PartialPayloadSensitizerRegistry($events);

Run partial strategy example example/PartialStrategy[#24]

make build-php ARG="--no-cache"
make upd
make composer ARG="install"
make enter
php example/PartialStrategy/example.php

Custom strategy

The Custom strategy involves the creation of specific Sensitizers in order to sensitize only a part of the payload
according to the needs. These Sensitizers extend the abstract class PayloadSensitizer[#25]
which involves the implementation of the PayloadSensitizer::generateSensitizedPayload(): array[#26]
and PayloadSensitizer::generateDesensitizedPayload(): array[#27]
methods.

Once defined, the Sensitizers must be used to initialize the specific CustomPayloadSensitizerRegistry[#28]
registry of this strategy.

The client class of the strategy is CustomStrategy[#29]
which is solely dependent on the CustomPayloadSensitizerRegistry. An example of implementation is present in the test[#30].

Run custom strategy example example/CustomStrategy[#31]

make build-php ARG="--no-cache"
make upd
make composer ARG="install"
make enter
php example/CustomStrategy/example.php

Strategy summary

	With the Whole Strategy you can decide what not to encrypt if necessary, but not for a single event; you can exclude keys for all events subject to sensitization.

	With the Partial Strategy you define the events you want to encrypt, and for each event you define the list of keys to be excluded, using a simple array.

	With the Custom Strategy you have full control over how to intervene on the payload.

Value Serializer

PayloadSensitizer[#32]
uses a value serializer[#33]
respecting the ValueSerializer interface. This Serializer implements strategy pattern to be able to chose which type
of serialization use. Broadway sensitive serializer provides a JsonValueSerializer[#34]
implementation to serialize this types: scalar, null, array

AggregateKey model creation

The PayloadSensitizer::$automaticAggregateKeyCreation[#35]
parameter determines if the AggregateKey model[#36]
should be created automatically at serialization, or if you want to create it manually. The existence check of the model
is not carried out in the PayloadSensitizer::desensitize(array $serializedObject): array[#37]
method as it would be a contradiction; the process of saving events starts with the saving and relative serialization
of a first event, so when calling the desensitize method it is assumed that the AggregateKey has already been created.
Otherwise an exception will be throw.

Automatic creation

In this mode the AggregateKey model, if it does not exist, is created when calling method
PayloadSensitizer::sensitize(array $serializedObject): array[#38].
The key is created if it does not exist, otherwise it uses the existing one:

$decryptedAggregateKey = $this->automaticAggregateKeyCreation ?
 $this->createAggregateKeyIfDoesNotExist($aggregateId) :
 $this->obtainDecryptedAggregateKeyOrError($aggregateId);

Manual creation

In this mode the AggregateKey model must exist, if it doesn’t, an exception will be raised. This mode involves
creating the model in advance. The most convenient time may be during the creation of the Aggregate.

$aggregateKeyManager->createAggregateKey($userId);

$user = User::create($userId, $name, $surname, $email, $registrationDate);

$users->add($user);

Generally speaking, the correct way to handle this in both ways would be to run the domain service atomically, within a
transaction. The ddd-starter-pack[#39]
library provide some convenient abstractions to handle this:
TransactionalApplicationServiceTest[#40]

Footnotes

[#1]
https://github.com/matiux/broadway-sensitive-serializer/blob/master/src/SensitiveSerializer/DataManager/Domain/Service/SensitiveDataManager.php

[#2]
https://github.com/matiux/broadway-sensitive-serializer/blob/master/src/SensitiveSerializer/DataManager/Domain/Service/SensitiveDataManager.php#L13

[#3]
https://github.com/matiux/broadway-sensitive-serializer/blob/master/src/SensitiveSerializer/DataManager/Domain/Service/SensitiveTool.php#L17-L20

[#4]
https://github.com/matiux/broadway-sensitive-serializer/blob/master/src/SensitiveSerializer/DataManager/Infrastructure/Domain/Service/AES256SensitiveDataManager.php

[#5]
https://github.com/matiux/broadway-sensitive-serializer/blob/master/src/SensitiveSerializer/DataManager/Domain/Service/KeyGenerator.php

[#6]
https://github.com/matiux/broadway-sensitive-serializer/blob/master/src/SensitiveSerializer/DataManager/Infrastructure/Domain/Service/OpenSSLKeyGenerator.php

[#7]
https://github.com/matiux/broadway-sensitive-serializer/blob/master/src/SensitiveSerializer/DataManager/Domain/Aggregate/AggregateKeys.php

[#8]
https://github.com/matiux/broadway-sensitive-serializer/blob/master/src/SensitiveSerializer/DataManager/Domain/Aggregate/AggregateKey.php

[#9]
https://github.com/matiux/broadway-sensitive-serializer-dbal

[#10]
https://github.com/matiux/broadway-sensitive-serializer/blob/master/src/SensitiveSerializer/Serializer/BroadwaySerializerDecorator.php

[#11]
https://github.com/broadway/broadway/blob/master/src/Broadway/Serializer/Serializer.php

[#12]
https://github.com/matiux/broadway-sensitive-serializer/blob/master/src/SensitiveSerializer/Serializer/SensitiveSerializer.php

[#13]
https://github.com/broadway/broadway/blob/master/src/Broadway/Serializer/Serializer.php

[#14]
https://github.com/broadway/broadway/blob/master/src/Broadway/Serializer/SimpleInterfaceSerializer.php

[#15]
https://github.com/matiux/broadway-sensitive-serializer/blob/master/src/SensitiveSerializer/Serializer/Strategy/WholeStrategy/WholePayloadSensitizer.php

[#16]
https://github.com/matiux/broadway-sensitive-serializer/blob/master/src/SensitiveSerializer/Serializer/Strategy/WholeStrategy/WholeStrategy.php

[#17]
https://github.com/matiux/broadway-sensitive-serializer/blob/master/src/SensitiveSerializer/Serializer/Strategy/WholeStrategy/WholePayloadSensitizerRegistry.php

[#18]
https://github.com/matiux/broadway-sensitive-serializer/blob/master/src/SensitiveSerializer/Serializer/Strategy/WholeStrategy/WholePayloadSensitizer.php#L37

[#19]
https://github.com/matiux/broadway-sensitive-serializer/blob/master/src/SensitiveSerializer/Serializer/Strategy/WholeStrategy/WholePayloadSensitizer.php#L36

[#20]
https://github.com/matiux/broadway-sensitive-serializer/tree/master/example/WholeStrategy

[#21]
https://github.com/matiux/broadway-sensitive-serializer/blob/master/src/SensitiveSerializer/Serializer/Strategy/PartialStrategy/PartialPayloadSensitizerRegistry.php

[#22]
https://github.com/matiux/broadway-sensitive-serializer/blob/master/src/SensitiveSerializer/Serializer/Strategy/PartialStrategy/PartialStrategy.php

[#23]
https://github.com/matiux/broadway-sensitive-serializer/blob/master/src/SensitiveSerializer/Serializer/Strategy/PartialStrategy/PartialPayloadSensitizer.php

[#24]
https://github.com/matiux/broadway-sensitive-serializer/tree/master/example/PartialStrategy

[#25]
https://github.com/matiux/broadway-sensitive-serializer/blob/master/src/SensitiveSerializer/Serializer/Strategy/PayloadSensitizer.php

[#26]
https://github.com/matiux/broadway-sensitive-serializer/blob/master/src/SensitiveSerializer/Serializer/Strategy/PayloadSensitizer.php#L112

[#27]
https://github.com/matiux/broadway-sensitive-serializer/blob/master/src/SensitiveSerializer/Serializer/Strategy/PayloadSensitizer.php#L132

[#28]
https://github.com/matiux/broadway-sensitive-serializer/blob/master/src/SensitiveSerializer/Serializer/Strategy/CustomStrategy/CustomPayloadSensitizerRegistry.php

[#29]
https://github.com/matiux/broadway-sensitive-serializer/blob/master/src/SensitiveSerializer/Serializer/Strategy/CustomStrategy/CustomStrategy.php

[#30]
https://github.com/matiux/broadway-sensitive-serializer/blob/master/tests/Integration/SensitiveSerializer/Serializer/Strategy/CustomStrategy/CustomStrategyTest.php#L167-L220

[#31]
https://github.com/matiux/broadway-sensitive-serializer/tree/master/example/CustomStrategy

[#32]
https://github.com/matiux/broadway-sensitive-serializer/blob/master/src/SensitiveSerializer/Serializer/Strategy/PayloadSensitizer.php

[#33]
https://github.com/matiux/broadway-sensitive-serializer/blob/master/src/SensitiveSerializer/Serializer/ValueSerializer/ValueSerializer.php

[#34]
https://github.com/matiux/broadway-sensitive-serializer/blob/master/src/SensitiveSerializer/Serializer/ValueSerializer/JsonValueSerializer.php

[#35]
https://github.com/matiux/broadway-sensitive-serializer/blob/master/src/SensitiveSerializer/Serializer/Strategy/PayloadSensitizer.php#L41

[#36]
https://github.com/matiux/broadway-sensitive-serializer/blob/master/src/SensitiveSerializer/DataManager/Domain/Aggregate/AggregateKey.php

[#37]
https://github.com/matiux/broadway-sensitive-serializer/blob/master/src/SensitiveSerializer/Serializer/Strategy/PayloadSensitizer.php#L114-L130

[#38]
https://github.com/matiux/broadway-sensitive-serializer/blob/master/src/SensitiveSerializer/Serializer/Strategy/PayloadSensitizer.php#L56-L72

[#39]
https://github.com/matiux/ddd-starter-pack

[#40]
https://github.com/matiux/ddd-starter-pack/blob/v3/tests/Integration/DDDStarterPack/Service/Application/TransactionalApplicationServiceTest.php

Examples

Library examples

In this repository you can find three example

	Whole strategy

	Partial strategy

	Custom strategy

Of course, you will also find many ideas in the tests.

Whole sensitization example

example/WholeStrategy[#1]

make build-php ARG="--no-cache"
make upd
make composer ARG="install"
make enter
php example/WholeStrategy/example.php | jq

Partial sensitization example

example/PartialStrategy[#2]

make build-php ARG="--no-cache"
make upd
make composer ARG="install"
make enter
php example/PartialStrategy/example.php | jq

Custom sensitization example

example/CustomStrategy[#3]

make build-php ARG="--no-cache"
make upd
make composer ARG="install"
make enter
php example/CustomStrategy/example.php | jq

Demo project

For a complete and working demo you can check out at this Symfony 6 project:
broadway-sensitive-serializer-demo[#4]. It is divided into
three branches:

	whole_strategy[#5]

	partial_strategy[#6]

	custom_strategy[#7]

Footnotes

[#1]
https://github.com/matiux/broadway-sensitive-serializer/tree/master/example/WholeStrategy

[#2]
https://github.com/matiux/broadway-sensitive-serializer/tree/master/example/PartialStrategy

[#3]
https://github.com/matiux/broadway-sensitive-serializer/tree/master/example/CustomStrategy

[#4]
https://github.com/matiux/broadway-sensitive-serializer-demo

[#5]
https://github.com/matiux/broadway-sensitive-serializer-demo/tree/whole_strategy

[#6]
https://github.com/matiux/broadway-sensitive-serializer-demo/tree/partial_strategy

[#7]
https://github.com/matiux/broadway-sensitive-serializer-demo/tree/custom_strategy

Limitations

Existing CQRS + ES projects

If you have read the previous pages you will have understood that the idea behind this library is to create sensitized
events from the beginning. Obviously I am not referring to all events, but to those containing sensitive data. If you
have existing projects, with an Event Store that contains events where sensitive data is in the clear, as we said,
creating compensation events will not serve you as the story remains clear. If you find yourself in this situation, the
only way I can advise you for now, with all the relative contraindications, is to take all your events and migrate them
to a new Event Store by execute a sensitization action in the middle, via the Data manager module.
By doing this you will have a new Event Store, the same as the old one, but with encrypted sensitive data.
From now on you will be able to use the library normally for the new events that will be generated.

Future idea

One idea for the future is to create a migration module in order to simplify the idea discussed above. With a simple
configuration, you could automate the creation of a new Event Store.

$eventsToSensitise = [
 UserRegistered::class => [
 'email',
 'surname',
],
 PersonalDataAdded::class => [
 'religion',
]
];

$eventStoreMigrator->execute($eventsToSensitise);

Footnotes

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to broadway sensitive serializer’s documentation

 		
 Basic concepts

 		
 CQRS

 		
 Event Sourcing

 		
 Event Store immutability

 		
 Projections

 		
 Art. 17 GDPR -Right to be forgotten

 		
 CQRS+ES+GDPR

 		
 The proposal

 		
 Event Store

 		
 Projections

 		
 Important note

 		
 Broadway concepts and proposal

 		
 Aggregate and persistence

 		
 Event serialization

 		
 Proposal implementation

 		
 Double key encryption

 		
 AGGREGATE_KEY

 		
 AGGREGATE_MASTER_KEY

 		
 Modules

 		
 Architectural diagram

 		
 Data manager

 		
 SensitiveDataManager

 		
 KeyGenerator

 		
 AggregateKeys

 		
 Serializer

 		
 BroadwaySerializerDecorator

 		
 SensitiveSerializer

 		
 Sensitization strategies

 		
 Whole strategy

 		
 Partial strategy

 		
 Custom strategy

 		
 Strategy summary

 		
 Value Serializer

 		
 AggregateKey model creation

 		
 Automatic creation

 		
 Manual creation

 		
 Examples

 		
 Library examples

 		
 Whole sensitization example

 		
 Partial sensitization example

 		
 Custom sensitization example

 		
 Demo project

 		
 Limitations

 		
 Existing CQRS + ES projects

 		
 Future idea

_static/file.png

_images/cqrs-es-diagram.png
Presentation

Some options for
consuming events

CartID
\ CartID

Date
Customer Item key External
Item name rnai
Address Quantity systems and
- applications
Materialized View

Published events

Query for
—Q_' current state
Eventism Replayed events of entities

_static/minus.png

_static/plus.png

